
PHYSICAL REVIEW E, VOLUME 65, 051902
Considerations in phase plane analysis for nonstationary reentrant cardiac behavior
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Cardiac reentrant arrhythmias may be examined by using time-series analysis, where a state variable is
plotted against the same variable with an embedded time delayt to form a phase portrait. The success of this
procedure is contingent upon the resultant phase-space trajectories encircling a fixed origin. However, errors in
interpreting the dynamics of phase singularities associated with reentry may arise due to the trajectories not
encircling the origin or due to a poor choice oft. We demonstrate an algorithm which is capable of establish-
ing proper orbits without the need to specifyt. We find that phase singularities could be localized closer to the
point of initial formation than was possible previously, which is important for the purposes of singularity
tracking and investigating electrodynamic interactions.
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I. INTRODUCTION

Phase plane analysis has recently offered a unique
spective into cardiac fibrillatory behavior@1–4#. An excit-
able element may be mapped into phase space by plotti
state variable against another variable; for example, the t
variable FitzHugh-Nagumo model allows for phase space
be examined in terms of excitability versus refractoriness@5#.
Normally, an excitable element remains at one stable lo
tion in phase space until a superthreshold stimulus pert
the system and forces the element into a closed-loop tra
tory about an attractor.

For practical purposes, an experimenter may not have
rect access to multiple, concurrent state variables in orde
perform a dynamical systems analysis. However, using ti
series analysis, a topologically equivalent attractor may
reconstructed given only one component of the system@6,7#.
For N evenly sampled values ofy(t), the attractor in two
dimensions isyi5„y( i ),y( i 1t)… where t is the time-
embedding lag andi 51, . . . ,N-1.

Given a spatiotemporal activation sequence, we can
time-series analysis to reconstruct a phase-space traje
by using the transmembrane potentialV(t) as a state vari-
able, and plotting it againstV(t1t). Typically, t is usually
calculated as the first zero crossing of the autocorrela
function for the data in order to insure linear independe
between the two state variables@8#. We may then define
phaseu as the angle made by the phase-space trajectory
respect to a central origin at a particular instant in time@1#.

Rotors are regions of excitability rotating around a cen
spatial location. In phase space, this point corresponds to
phase singularity, a topological defect where all phase va
~i.e., 2p to p) converge and the phase itself at that point
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undefined@9#. An example is shown in Fig. 1~a!; here, an
isochronal activation map is used to highlight the location
the rotor and the motion of the wave around it. Regio
around the phase singularity are characterized by lo
amplitude oscillations@10,11#. In the phase plane, these co
respond to rotations with a small circumferential length.

As described by Grayet al., @1# a fixed origin in the phase
plane is defined by using the average valueVmeanof the state
variableV(t) for the entire sequence about which the insta
taneous phase angle is determined. However, in the cas
unstable or drifting reentrant patterns such as fibrillatio
low-amplitude passive responses may occur as the vo
meanders through or near a particular location. Theref
one limitation of this approach is that, for such a site,
cycles in the phase plane may not encircle the origin as
fined byVmean, as shown in Fig. 1~c!. In addition, the selec-
tion of embedding delayt is critical; a nonoptimal choice o
t may lead to a low-quality reconstruction of phase space
t is too small, thenV(t)'V(t1t) ~i.e., the values are highly
correlated!, resulting in the trajectories being concentrat
on the diagonal in the reconstructed phase space, as sho
Fig. 2~a!. An overly large choice oft leads to decorrelation
of the data, resulting in stretching and deformation of t
phase trajectories as the structure of the attractor is
stroyed. If we define a proper rotation as one which ha
definite direction and a unique center of rotation, we s
from Fig. 2~b!, this choice oft leads to several imprope
rotations along the trajectory, which will yield a distorte
calculation of phase aboutVmean. This in turn could lead to
errors in interpreting the dynamics of phase singularities
sociated with reentry. Furthermore, during full fibrillation
the number of wave fronts and wave morphology chan
unpredictably. Hence, the optimal value oft as calculated by
the autocorrelation method may not be unique for the en
spatiotemporal course of recorded activity. We propose
alternate method of reconstructing the phase space w
takes into account the nonstationary nature of fibrillatory
havior and the pitfalls of a nonoptimal choice oft.
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MARK-ANTHONY BRAY AND JOHN P. WIKSWO PHYSICAL REVIEW E65 051902
FIG. 1. ~a! An isochronal map from numerically simulated data. The white arrow indicates the direction of wave rotation.~b! Trans-
membrane signal measured at the site indicated by the black arrow in~a!. Oscillations falling below the mean value,Vmean, of the signal are
shown with dotted lines.~c! Phase portrait of the signal shown in~b! usingt53. The origin (Vmean,Vmean) is indicated by a circle.
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II. METHODS

The primary difficulty in calculating phase for this varie
of oscillatory behavior is the presence of multiple centers
rotation in the phase plane during the temporal evolution
the system. A solution is to modify the state variable in
attempt to insure a fixed center of rotation@12#. This proce-
dure is dependent on the proper implementation of the
pirical mode decomposition~EMD! @13#, which divides the
signal into a series of intrinsic mode functions, each of wh
represents an oscillation frequency embedded within the
nal. However, the process grants proper rotations toall de-
flections in the signal, regardless of amplitude. Therefo
oscillations stemming from noise are treated the same as
cillations generated from action potential propagation.
companion problem is the iterative nature of the procedu
which can result in inappropriate exaggeration of even
most minute deflections. Therefore, there is not necessar
good correlation between an intrinsic mode of a tempo
signal at a particular location and its neighbor. Hence,
EMD does not easily lend itself to analysis of a spatia
distributed series. We have modified the algorithm in orde
include considerations unique to cardiac data.
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A. The pseudo-EMD „PEMD…

Since not every oscillation in the data is significant, t
first task is to determine which oscillations are given prop
rotations in the phase plane. To this end, the algorithm fi
performs a PEMD upon the data. First, we construct t
envelope curves which connect the maximaVmax(t), and
minima Vmin(t), of the wave form. This is performed b
applying a sliding maximum and minimum filter to the dat
The length of the filter window is determined in the follow
ing way. The period of the reentrant activity was estima
on the basis of the dominant frequency component of
data; since much of tissue is at some distance from the p
singularities present, it was assumed that the period obta
would be representative of single-action potentials alo
Since reentry may be characterized by double-humped
tentials @14,15#, we then used half this value as the filt
window length in order to also isolate the double peaks. A
plying these two filters and subtracting the results will yie
zeros surrounding the extrema. The result can further be
cessed to produce the actual extrema points. As oppose
@13#, we have chosen to use piecewise cubic Hermite ra
than cubic spline interpolation to connect the extrema si
cubic spline interpolation may create large swings betw
-
FIG. 2. Example of phase
space trajectories resulting from
poor choices oft. ~a! t53. ~b! t
56.
2-2
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CONSIDERATIONS IN PHASE PLANE ANALYSIS FOR . . . PHYSICAL REVIEW E 65 051902
extrema. The envelope midlineVmean* (t) is then computed as
@Vmax(t)1Vmin(t)#/2. We then detrendV(t) by computing
V8(t)5V(t)2Vmean* (t). In this way, we create a rough ap
proximation of an intrinsic mode function with the pertine
frequency information desired.

B. The Hilbert transform

Mathematically, a function and its Hilbert transform a
orthogonal over the infinite interval. Hence plottingV8(t)
against its Hilbert transform will yield proper rotations in th
phase plane. The Hilbert transform is calculated as@16#

H@V8~ t !#5
1

p
PF E

2`

` V8~T!

t2T
dTG , ~1!

where P is the Cauchy principal value of the integral. F
practical purposes, this integral is never actually calcula
it is obtained fromV8(t) by a filter with a unity amplitude
response and a phase response with a constantp/2 lag at all
frequencies.V8(t) andH@V8(t)# may be combined as com
plex conjugates to form an analytical signal,

Ṽ~ t !5V8~ t !1H@V8~ t !#5A~ t !eiu(t), ~2!

where A(t) is an amplitude function, andu(t) is a phase
function.

The application of the PEMD and the Hilbert transform
displayed in Fig. 3 for a numerically simulated signal.

C. Calculation of phase

Using a constantVmean, the spatial phase map for eac
coordinate (x,y) is calculated as

u~x,y,t !5arctanFV~x,y,t1t!2Vmean~x,y!

V~x,y,t !2Vmean~x,y! G , ~3!

whereas the expression of phase using the Hilbert transf
is

u~x,y,t !5arctanF V8~x,y,t !

H@V8~x,y,t !#
G . ~4!

The formulation ofu in Eq. ~4! is the same as what follow
from the definition of the analytical signal given in Eq.~2!.
Also note that the formulation is independent of any tim
embedded delayt.

D. Numerical Simulation and Experimental Preparation

The numerical methods are identical to those descri
previously @11,17#. The tissue was modeled as a thre
dimensional~3D! bidomain using the Beeler-Reuter mod
for the active membrane kinetics
05190
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V̇5D¹2V2~ i Na1 i K11 i x11 i S2 i ext!/C,

ẏk5 f ~yk ,V!, k5228, ~5!

whereD is the diffusion coefficient,C is the membrane ca
pacitance,i Na is a fast inward sodium current,i K1 is a time-
independent outward potassium current,i x1 is a time-
activated outward current,i S is a slow inward calcium
current, i ext is the external injected current, andyk are a
number of gating variables.

FIG. 3. Flowchart of the algorithm as applied to numerica
simulated data.~a! V(t) with Vmean* (t) shown as a broken line.~b!
V8(t), the result of subtractingVmean* (t), as produced by the
PEMD, fromV(t). ~c! The Hilbert transform ofV8(t).
2-3
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FIG. 4. ~a! Example of phase
trajectory using Hilbert transform
Circle indicates origin~0,0!, same
segment from Fig. 1~b! shown as
broken line.~b! Expanded view of
~a! illustrating the highlighted seg-
ment.
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The experimental protocols, high-speed optical imag
system, and signal-processing methods have been desc
previously @11#. A conditioning stimulus~S1! through an
electrode renders the tissue in a refractory state. A su
quent premature stimulus delivered through the same e
trode ~S2!, produces unidirectional conduction block su
that quatrefoil reentry, a spiral wave pattern with fourfo
symmetry, is created. The same stimulation protocol is u
for the numerical simulations. For the experimental set
spatiotemporal movies were recorded at 267 frames/sec i
image format of 96364 pixels (20.0313.5 mm) for 300
frames. For the purposes of this manuscript, we expresst in
time units~t.u.! of image frames. Spatial and temporal filte
ing was applied to improve the signal-to-noise ratio. Both
experimental and the numerically simulated data were n
malized to the range@0,1# with the resting potential as 0 an
the amplitude of the S1 stimulus as 1.

Singularity detection was performed using the algorith
described in@3#. In brief, the concept of topologcal charge
implemented as a series of convolution operations to dete
spatial phase distribution of 2p around a pixel, the distin-
guishing characteristic of a phase singularity. These po
are assigned a topological charge of61, depending on
chirality; elsewhere, the pixels are assigned a value of z

III. RESULTS

The PEMD Hilbert-transformed phase trajectory cor
sponding to Fig. 1~c! is shown in Fig. 4~a!, where it can be
seen that each orbit corresponds to a single proper rota
about the origin~0,0!. Figure 4~b! is an expanded view o
Fig. 4~a!, showing a portion of the trajectory with the sam
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segment as in Fig. 1~b! highlighted with a broken line. We
see that the origin is encircled by both these loops.

The difference in the phase maps can be seen in Fig
Figure 5~a! shows the phase map using a fixed center
rotation andt53, whereas Fig. 5~b! is generated using the
PEMD Hilbert-transformed data. Figure 5~c! shows a differ-
ence map, the result of subtracting the first two panels fr
each other. Within the phase map, the phase singular
may be identified as those areas where all the colors c
verge to a single point. The most significant differences fr
the time-series method are concentrated around the vic
of the phase singularities, which is expected since it is th
regions whereVmean is most likely to miss rotations in the
phase plane, while yielding relatively unchanged values
larger distances from the singularities.

The dependence of the localization of the phase singu
ity on the choice oft is shown in Fig. 6. Of note is the
disparity in the location of the singularities using a const
center of rotation, especially in Fig. 6~c!, where extraneous
singularities are visible. The singularities created with t
PEMD-Hilbert transform bear the most resemblance to th
generated usingt53; while t57 was calculated by the au
tocorrelation function to be the optimal value for the embe
ded delay, loweringt to 3 actually provided the least amou
of trajectory deformation in the vicinity of the singularities

We examined the difference between the locations of
singularities as defined using a fixed center of rotation an
t of 3, and using the PEMD-Hilbert transform. The avera
difference was 2.361.9 spatial units~on a grid of 101
3101 units!. We also observed that the difference tended
be the greatest when the spiral was experiencing its grea
degree of meander.
y

t-
FIG. 5. Comparison of phase
maps calculated from numericall
simulated data.~a! Map calculated
using t53. ~b! Map calculated
using Hilbert transform.~c! Dif-
ference map created by subtrac
ing ~a! and ~b!.
2-4
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CONSIDERATIONS IN PHASE PLANE ANALYSIS FOR . . . PHYSICAL REVIEW E 65 051902
Applying this formulation to experimental data@an iso-
chronal activation map is shown in Fig. 7~a!# yields similar
results. Figure 7~b! displays an unprocessed sample wa
form taken from a data set exhibiting quatrefoil reentry. T
dotted regions in Fig. 7~b! highlight a region where a phas
singularity is present. The corresponding phase trajector
shown in Fig. 7~c!, which exhibits some improper rotation
Again, we calculateVmean* for this wave form, generate
V8(t), and subsequentlyH@V8(t)#, as seen in Fig. 8. The
corresponding PEMD Hilbert-transformed phase traject
to Fig. 7~a! is shown in Fig. 9~a!, where it can be seen tha
each orbit corresponds to a single proper rotation about
origin ~0,0!. Figure 9~b! is an expanded view of Fig. 9~a!,
showing a portion of the trajectory with the same segmen
in Fig. 7~a! highlighted with a broken line. Like the numer
cally simulated wave form, we see that the origin is encirc
by these loops.

FIG. 6. Comparison of phase singularity maps generated f
various values of t and the PEMD-Hilbert transform.~a! t53; ~b!
t56; ~c! t59; and~d! PEMD-Hilbert transform.
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The difference in the phase maps can be seen in Fig.
Fig. 10~a! shows the phase map using a fixed center of ro
tion and t57, whereas Fig. 10~b! is generated using the
PEMD Hilbert-transformed data. Figure 10~c! shows the dif-
ference map; once again, the regions with the highest dif
ence magnitude are located at the singularities, altho
some noise can be seen in Fig. 10~b!. The average difference
in singularity localization between the two methodologi
was 0.5260.47 mm ~in a field of view of 20.0
313.5 mm).

An additional consequence of usingVmean* is that we are
able to observe the initial phase singularity formation mu
closer to the start of the S2 stimulus than is permissible w
Vmean, as shown in Fig. 11. Figure 11~a! is taken at a point
3 t.u. after the beginning of the S2~S2 terminates after 7
t.u.!; the singularities are not visible in the frame genera
from Vmean because the improper rotations in the pha
plane during S2 result in a miscalculation of phase and th
fore, a disruption in singularity localization. This finding
important for the purpose of automated phase singula
tracking and for examination of the early dynamics of t
phase singularity.

IV. DISCUSSION

Computation of the spatial phase map is important
tracking phase singularity formation and behavior duri
fibrillatory activity. The standard means of calculating t
phase map assumes a constant, fixed center of rotation in
phase plane, which may lead to missed or distorted rotat
in the phase trajectory. Detrending the state variable on
basis of oscillation magnitude serves to create a nonstat
ary origin which takes the temporal evolution of the sign
into account. The analytic signal of this state variable gen
ates a proper rotation in the phase plane~a 2p rotation about
the origin! while removing the dependence on the choice
time-embedded delayt. We have observed small difference
in singularity localization depending on which methodolo
is used; while a discussion of absolute localization accur
is difficult due to the lack of a ‘‘gold standard’’ of singularit
identification, the PEMD-Hilbert transform algorithm a

m

ines.

FIG. 7. ~a! An isochronal map from experimental data. The white arrow indicates the direction of wave rotation.~b! Transmembrane

signal measured at the site indicated by the arrow in~a!. Oscillations indicating presence of the phase singularity shown with dotted l
~c! Phase portrait of the signal shown in~b! usingt57. Origin (Vmean,Vmean) indicated by circle.
2-5
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MARK-ANTHONY BRAY AND JOHN P. WIKSWO PHYSICAL REVIEW E65 051902
FIG. 8. Flowchart of the algorithm as applied to experimen
data.~a! V(t) with Vmean* (t) shown as a broken line.~b! V8(t), the
result of subtractingVmean* (t), as produced by the PEMD, from
V(t). ~c! The Hilbert transform ofV8(t).
05190
tempts to correct for several recognized sources of error
addition, this method has the effect of enabling phase sin
larity observation closer to initial formation than previous
allowed.

A. Observation of Initial Singularity Formation

Virtual electrodes are critical to phase singularity form
tion and initial dynamics, and therefore their early detect
is important@18,3#. The fact that phase singularities are vi
ible earlier using the PEMD-Hilbert transform algorith
than the constantVmean methodology is evident from Fig
11; reducingt to 3 causes the singularities to appear ear
but still not as early as the those produced by the PEM
Hilbert transform algorithm The question remains as
whether these ‘‘early’’ singularities are indeed real or an
tifact of the algorithm. In Fig. 12~a!, the optical signal during
the S2 stimulus from a virtual cathode (Vc) is shown along-
side a signal from the virtual anode (Va). The constant val-
ues ofVmean for Vc and Va has been subtracted from bo
curves such thatVmean from this point on is now zero for
both curves~shown as a broken line!. We see that while the
zero-line origin intersects the hyperpolarization trough
Va , it completely misses the depolarizing peak atVc . In
terms of the phase plane, the depolarization from the virt
cathode advances the phase of this point and initiates ree
by producing an additional cycle~type 0 or even phase re
setting! @9#. Hence, the fact that this shift in phase is n
captured as a full rotation around the origin in the pha
plane is problematic. The appearance of the phase singul
is delayed until a neighborhood of pixels repolarize such t
they create a 2p distribution about the origin in the phas
plane ~recall that singularity detection requires a 2p distri-
bution of phase around a spatial point!.

On the other hand, we see that both the anodal
cathodal traces are bisected byVa(mean)* and Vc(mean)* , re-
spectively. OnceV8(t) is generated by subtracting these mi
line traces, bothVc andVa are distributed about the zero-lin
origin, as shown in Fig. 12~b!. Figure 13 illustratesVc from
Fig. 12~a! in the phase plane created usingVmean where the
S2 stimulus generates an improper rotation, whereas the
of Vmean* brings the S2 oscillation into a proper rotation. Th
expected even phase resetting atVc is clearly seen which,
along with Vc , produces an accompanying 2p distribution

l

e
t

FIG. 9. ~a! Example of phase
trajectory using PEMD-Hilbert
transform. The circle indicates th
origin ~0,0!, the same segmen
from Fig. 7~b! is shown as a bro-
ken line.~b! Expanded view of~a!
illustrating the highlighted seg-
ment.
2-6
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FIG. 10. Comparison of phase
maps calculated from the exper
mental data set used to obta
Figs. 7–9.~a! Map calculated us-
ing t57. ~b! Map calculated us-
ing the PEMD-Hilbert transform.
~c! Difference map created by
subtracting~a! and ~b!.
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of phase around the origin and the appearance of the co
sponding singularity at the junction between the virtual el
trodes.

B. Limitations

While this method generates proper rotations for selec
oscillations in the wave forms, the question still remains
what is the smallest oscillation magnitude which should
allowed a proper rotation. For an example, note the sm
hump att5164 t.u. in the top panel of Fig. 3 which is misse
by Vmean* . The question is whether omitting this peak is a
ceptable or not. If it is part of a subthreshold response, t
it does not matter; unless the phase is reset somewhere
vicinity, even though the phase value may be calculated
ferently, a phase singularity will not be detected. If instea
is a low-amplitude response due to its proximity to the re
trant core, shifting its value such that it encircles the orig
will cause a phase distortion which may impair singular
localization. In the case of the numerical data of Fig. 3, su
a situation causes a slight smearing of the singularity.
experimental data, it is a larger concern since spurious
trema may create unwanted deflections inVmean* . The mag-
nitude of this issue is dependent on the window size used
the calculation ofVmean* , therefore, a compromise must b
made between making the window so short it catches
wanted extrema, or so long that it compromises the selec
of the double-peaked potentials. This issue is problem
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FIG. 11. Phase singularity maps duringS2 stimulation using
experimental datat57 ~left column! and the PEMD-Hilbert trans-
form ~right column!. S2 1 ~a! 3, ~b! 8, and~c! 12 t.u.
FIG. 12. ~a! V(t) traces from point located within virtual cathode~solid gray curve! and virtual anode~solid black curve!; corresponding
Va(mean)* (t) and Vc(mean)* (t) traces for each measurement point~dotted lines!; Vmean defined as zero~broken line!. Vertical lines show
duration of S2 stimulus.~b! V8(t) traces corresponding toV(t) in ~a!. Zero line drawn as broken line.
2-7
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FIG. 13. Phase trajectories fo
the data at the virtual cathode i
Fig. 12 with the segment corre
sponding to the duration of S2
stimulus shown as dotted line.~a!
t57, ~b! PEMD-Hilbert trans-
form.
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because an excursion inVmean* is not transient but instea
occurs over a duration lasting the length of time from t
previous extrema to the subsequent extrema. Hence, p
values can be distorted over a wide length of time.

As mentioned above, it is worth noting that a small val
of t produces results similar to the PEMD-Hilbert algorithm
as compared to the larger value determined by the a
correlation function~Fig. 7!. For the time-delay embeddin
method, choosing a value oft close to the duration of the
action potential upstroke tends to minimize the traject
distortion in the phase portrait, especially in the case of
brillation where the upstroke duration is prolonged@2#.
Therefore, globally choosing a shortt for the time-delay
embedding method achieves the same desired effect in
phase plane as the orthogonality of the Hilbert-transform
signal.

The algorithm presented still possesses a time-depen
component, the calculation of the PEMD; the effectiven
of the Hilbert transform is dependent on the proper deter
nation of the PEMD. The window length is currently chos
fe
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not on the basis of the double oscillations themselves
inferred on the basis of the full action potentials. Using h
the period of the full potential seems to be successful in m
cases tested but this assumption may not apply to every
of cardiac wave forms. Setting the filter window too larg
may cause small oscillations situated between larger one
be omitted entirely; setting the window too small runs t
risk of incorrectly capturing deflections due to noise. Bas
on our experience, we have found it more desirable to err
the side of a shorter window when selecting the optimal w
dow length. A more rigorous criterion for calculating th
PEMD is a subject for future research.
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